SCALING LAWS FOR MIXED QUANTIZATION IN LARGE LANGUAGE MODELS

Zeyu Cao¹, Cheng Zhang², Pedro Gimenes², Jianqiao Lu³, Jianyi Cheng⁴, Yiren Zhao² *

¹Department of Computer Science and Technology, University of Cambridge

²Department of Electrical & Electronic Engineering, Imperial College London

³Department of Computer Science, University of Hong Kong

⁴School of Informatics, University of Edinburgh

zeyu.cao@cl.cam.ac.uk, jqlu@cs.hku.hk, jianyi.cheng@ed.ac.uk
{cheng.zhang122, pedro.gimenes19, a.zhao}@ic.ac.uk

ABSTRACT

Post-training quantization of Large Language Models (LLMs) has proven effective in reducing the computational requirements for running inference on these models. In this study, we focus on a straightforward question: When aiming for a specific accuracy or perplexity target for low-precision quantization, how many high-precision numbers or calculations are required to preserve as we scale LLMs to larger sizes? We first introduce a critical metric named the quantization ratio, which compares the number of parameters quantized to low-precision arithmetic against the total parameter count. Through extensive and carefully controlled experiments across different model families, arithmetic types, and quantization granularities (e.g. layer-wise, matmul-wise), we identify two central phenomenons. 1) The larger the models, the better they can preserve performance with an increased quantization ratio, as measured by perplexity in pre-training tasks or accuracy in downstream tasks. 2) The finer the granularity of mixed-precision quantization (e.g., matmul-wise), the more the model can increase the quantization ratio. We believe these observed phenomena offer valuable insights for future AI hardware design and the development of advanced Efficient AI algorithms.

1 INTRODUCTION

Large Language Models (LLMs) have demonstrated remarkable performance across a range of natural language processing (NLP) tasks (Brown et al., 2020), and state-of-the-art models have ranged from 1.6B parameters (Radford et al. (2019)) to 1T parameters (Fedus et al. (2022)) in recent years. Recent work has driven the development of even larger models given findings that LLMs exhibit emergent capabilities at increased parameter counts (Wei et al., 2022a). As such, researchers have endeavoured to understand the scaling laws of LLMs by characterising how the required number of training tokens scales with parameter count to train compute-optimal models under a fixed compute budget (Kaplan et al. (2020), Hoffmann et al. (2022)). These works provide insight on how to best allocate resources in training increasingly large LLMs.

Despite recent scaling trends, the substantial size of LLMs and their accompanying computational demands require significant energy and hardware resources. For instance, inference deployment of the 405B parameter LLaMA-3.1 model (Dubey et al., 2024) requires 8 NVIDIA H100 GPUs to store its 427GB of model weights even under FP8 quantization, and consumes over 4500 Watts of power (based on the average power consumption of 600W per H100 GPU). As such, quantization is emerging as a promising solution to increase the accessibility of LLMs by reducing their memory requirement and inference cost. Prior work has shown that weights and activations in pretrained transformer blocks often yields magnitude outliers, which has been addressed by casting outliers to high precision, while quantizing the rest of the network to low precision (Dettmers et al., 2022). Such mixed-precision partitioning has been shown to preserve model performance with significant savings in memory footprint and model inference serving throughput.

^{*}Corresponding author.

With the increased usage of quantization to address the challenges of LLM deployment, and motivated by the importance of understanding systematic scaling laws in guiding further research in mixed-precision quantization, we seek to answer an underexplored question: in an optimal mixed-precision mapping, how does the required ratio of low precision components change as model size increases? Alternatively, *what are the scaling laws for mixed quantization in LLMs*?

We define the mixed-quantization ratio Q_r as the ratio of parameters using low-precision arithmetic to the total number of parameters (i.e.

Low Precision Parameters Total Parameters), and consider the scenario where no finetuning takes place after quantization. To illustrate our main results, we show how performance scales with both model size and mixedquantization ratios for Qwen models in Figure 1. The figure demonstrates our key observation that as model size increases, higher quantization ratios yield a lower performance penalty. In fact, through extensive and carefully controlled experiments, we show that *the number of low-precision components scales exponentially relative to the growth in model size* under a fixed performance budget.

Additionally, we examine the practical aspects of deploying mixed-precision LLMs, namely the granularities at which quantization can be applied (i.e. per transformer layer, matrix multiply operation, etc), and how this affects performance degradation as parameter count increases. We find that mixed-precision LLMs benefit greatly from quantization at finer granularities, by effectively leveraging the unstructured distribution of outliers in weights and activations.

Our main contributions are as follows.

- We conduct a series of carefully designed, controlled experiments across various model families, arithmetic types, and quantization granularities to examine the scaling behaviour of LLMs in the context of mixed-precision quantization.
- We summarize the results and formulate two scaling phenomena, named *LLM-MPQ* scaling laws, for mixed quantization in LLMs.
- We discuss the potential benefits and implications of the proposed scaling laws for future AI inference systems and hardware designs, arguing that the advancement of low-precision arithmetic hardware could facilitate the scaling of future LLM inference.

2 BACKGROUND

2.1 QUANTIZATION OUTLIERS AND MIXED QUANTIZATION

Weight and Activation Outliers in LLMs A weight or activation value is considered an outlier when there is a significant deviation from its mean distribution. These values make traditional uniform quantization less effective due to the large incurred dynamic range. In fact, activation outliers have been observed more frequently in large transformer-based models (Wei et al., 2022b; Zhang et al., 2023a) as deeply cascaded layers accumulate quantization errors. To address this problem, two strategies are widely adopted; in weight-only quantization, weights are casted to low precision while activations are left in a higher-precision format such as FP16 or BF16 (Frantar et al., 2022; Chee et al., 2024; Lin et al., 2024). Meanwhile, weight-activation quantization relies on methods such magnitude transfer from activations to weights using invertible scale matrices (Xiao et al., 2023) to alleviate the effect of activation outliers before quantizing both weights and activations (Wei et al., 2023; Xiao et al., 2023).

Recent works have proposed novel numerical formats with shared scaling/exponent components, which better accommodate the dynamic range of outliers (Zhang et al., 2023a; Rouhani et al., 2023a; Zou et al., 2024). For example, MXINT (Darvish Rouhani et al., 2020) is new standard for hardware-efficient numerical formats sharing an exponent across a block of mantissas (Rouhani et al., 2023b). The hardware efficiency of these methods often outperforms standard low-precision floating-point computation, although custom hardware support is required to be used in practice.

Mixed-precision quantization Mixed precision approaches involve partitioning a model's parameters into both high-precision and low-precision components, which have been shown to better preserve model performance relative to uniform quantization. This is primarily seen in models that exhibit different sensitivities to quantization at various layers. Some mixed-precision LLM quantization work adopts the concept of weight salience to guide the search for fine-grained bit allocation. The first order (Li et al., 2023a) or second order weight gradient (Huang et al., 2024) have been used to form such salience metrics, such that salient layers are left in higher precision while the rest are casted to low precision. There are also works performing the search in an end-to-end style with the quantized model performance as the objective, such as the accuracy on a downstream task (Zhang et al., 2023a). In both cases, mixed-precision can be seen as a promising approach to provide loss-less reduction in LLM memory requirements, reducing average bitwidths below levels achievable through uniform quantization (as in Badri & Shaji (2023); Lin et al. (2024); Chee et al. (2024)).

Mixed-precision inference Mixed-precision inference methods targeting GPUs usually adopt regular mixed-precision strategies and computation patterns; The authors of GPTQ3.int8() (Dettmers et al., 2022) decompose the matrix multiplication in every linear layer into two submatrix-multiplications based on the activation magnitudes, achieving $2-3 \times$ inference speedup by casting the low-magnitude submatrix to low precision. SpQR (Dettmers et al., 2023) represents a weight matrix with grouped 3-bit integers and less than 1% sensitive weight elements with FP16 values, achieving $2 \times$ speed up compared to a quantized and sparse PyTorch baseline. These approaches enable reducing model size, but additional careful treatment is needed to improve inference throughput. For example, in Li et al. (2023a), mixed precision LLM quantization at 2-bit and 3-bit showed no speedup compared to 4-bit, due to less efficient utilization of memory bandwidth. On the other hand, Any-Precision LLM (Park et al., 2024) achieve throughput scaling at various precisions by providing CUDA kernels with a novel weight packing approach following a bitplane layout, achieving 1.3-1.8× speedup on mobile and edge devices. Additionaly, works such as FlightLLM achieve high throughput by leveraging custom hardware designs (Zeng et al., 2024).

Mixed-precision training Mixed-precision quantization has also been adopted in training to reduce the large memory footprint of gradient descent, which requires storage of optimizer states and gradients in addition to forward activations. It's been shown the training process can tolerate aggressive quantization and correct quantization noise in some components. Micikevicius et al. (2017) is the pioneering work proposing storage of all weights, activations and gradients in FP16, while updating a copy of weights in FP32. This work also proposed scaling up the forward pass loss and unscaling the gradient before weight update to avoid underutilization of the FP16 representable range, leading to half the memory requirement and speed-ups of $2-6 \times$ relative to FP32 training.

Recently, more aggressive quantization has been studied for mixed-precision training. Mellempudi et al. (2019) trains models with E5M2 FP8, maintaining a master copy of the weights in FP16, and dynamically adjusting the scaling factor every few iterations. Hybrid-FP8 (Sun et al., 2019) improves FP8 training by using E4M3 for forward propagation and E5M2 for backward propagation, leading to matching performance to models trained with FP32. Popular implementation of FP8 mixed-precision training like TransformerEngine¹ has achieved a training acceleration around $3-4\times$ compared to FP16 mixed-precision training.

2.2 SCALING LAWS OF LARGE LANGUAGE MODEL TRAINING

Enhanced language modelling performance at larger model sizes has led to interests in characterising scaling laws of LLM performance with respect to parameter count, training compute budget and number of training tokens. Kaplan et al. (2020) showed, though empirical analysis, that Transformer

¹TransformerEngine: https://github.com/NVIDIA/TransformerEngine

performance follows a power law trend with each of these factors. The authors proposed that for any $9 \times$ increase in parameter count, dataset size should be increased by a factor of approximately $5 \times$ to avoid a performance penalty, suggesting that higher performance gains are observed from scaling parameter count than dataset size under a fixed compute budget. Contrastingly, Hoffmann et al. (2022) argue that existing open weight LLMs are undertrained relative to their size, and parameter count should be increased in line with the number of training tokens. The findings from Pearce & Song (2024) later explained the discrepancy between Kaplan and Hoffman, reaffirming the validity of the Chincilla scaling laws and highlighting the need for high quality datasets for Language Model training.

Despite the reconciliation of Kaplan's scaling laws, we see the continued trend of scaling LLM sizes, partly validated by the findings from Wei et al. (2022a) regarding the unpredictable emergence of abilities in larger LLMs. The authors characterise how LLM performance in few-shot tasks including arithmetic, question answering and multi-task language understanding emerges beyond certain size thresholds, despite not being observable in small models - for example, performance on arithmetic tasks from BIG-Bench is approximately random for GPT-3 models up to 13B parameters and LaMDA models up to 68B parameters, sharply rising thereafter. The authors note there are few compelling explanations for these emergence phenomena, although the required model depth for reasoning tasks may be correlated with the number of reasoning steps. At any rate, these findings raise the question of what emergent phenomena may observed for even larger models, and highlight the importance of understanding scaling laws across a wide range of model sizes, without extrapolating observations from small models.

3 SCALING LAWS FOR MIXED QUANTIZATION

Consider a model $F(W_l, W_h)$, parameterized by low and high-precision components, W_l and W_h . We define a model's quantization ratio Q_r as the ratio of low-precision parameters to the total number of parameters, i.e. $\frac{||W_l||_0}{||W_h||_0+||W_l||_0}$, where $||\cdot||_0$ computes the l_0 norm. The optimal allocation of low-precision parameters for a model under a fixed quantization ratio, described by W_l^{opt} and W_h^{opt} , can be found through the following optimization problem, where $L(\cdot)$ is the task loss.

$$W_{l}^{opt}, W_{h}^{opt} = \arg\min_{\substack{W_{l}, W_{h}; s.t. \frac{\|W_{l}\|_{0}}{\|W_{h}\|_{0} + \|W_{l}\|_{0}} = Q_{r}} L(F(W_{l}, W_{h}))$$
(1)

Equation 1 outlines the optimization problem used to evaluate the hypothesized scaling laws. In this work, we find an approximate solution to the problem using a random search algorithm to allocate a numerical precision to each component of the network (i.e. layer or matrix multiply operation, according to the granularity). Furthermore, no weight training is performed after quantization, such as to observe the immediate performance degradation. We describe the observed scaling laws in this section, and present empirical evidence to support them in Section 4.

LLM-MPQ Scaling Law 1: Scaling with Model Sizes

Given a fixed loss budget L_{max} , the maximum achievable mixed precision quantization ratio $Q_r = \frac{\|W_l\|_0}{\|W_h\|_0 + \|W_l\|_0}$ increases as the model size $(\|W_h^{opt}\|_0 + \|W_l^{opt}\|_0)$ increases.

The first scaling law posits our central hypothesis: as model size grows, so does the required quantization ratio, under a fixed task loss target. This aligns with findings from related research, such as AWQ (Lin et al., 2024), Quip (Chee et al., 2024) and LQER (Zhang et al., 2024), which empirically demonstrated that larger models can accommodate more aggressive quantization levels. An alternative view, also reflected in related work, is that for a fixed quantization ratio, task loss decreases when the model size becomes larger.

LLM-MPQ Scaling Law 2: Scaling with Quantization Granularities

Given a fixed loss budget L_{max} , the maximum achievable mixed precision quantization ratio $Q_r = \frac{\|W_l\|_0}{\|W_h\|_0 + \|W_l\|_0}$ increases if a finer granularity is applied to W_l^{opt} and W_h^{opt} .

The second scaling law focuses on the granularity of quantization, which can refer to the size of the group in which quantization is applied, *e.g.*, per-vector, per-tensor or per layer. This hypothesis is reflected by observations from previous studies like Dettmers et al. (2022), which noted that specific parameter groups required high-precision components to avoid performance degradation. At lower quantization granularities, a more significant portion of the high-precision quantization budget is allocated to operations that could be casted to low precision without a performance penalty. This effect is particularly pronounced when the distribution of outliers is highly irregular.

Many studies have empirically demonstrated that larger models are more amenable to quantization (Dettmers et al., 2022; Xiao et al., 2023), and in this work, we offer a systematic perspective on this finding by formulating the aforementioned Scaling Laws. Crucially, we illustrate that model size (Law 1) **exhibit exponential scaling relative to the "ease of quantization"** while quantization granularity (Law 2) **exhibit power function scaling relative to the "ease of quantization"** in a mixed-precision setting. These observation suggest that the hidden law demonstrated under mixed quantization settings are non-trivial. Here, we refer to the "ease of quantization" as the proportion of high-precision components necessary to maintain model performance.

4 EXPERIMENTS

4.1 EXPERIMENT SETUP

Models and benchmarks We evaluate a range of model families, including LLama-2 (Touvron et al., 2023), Gemma-2 (Team et al., 2024) and QWen-1.5 (Bai et al., 2023), at sizes ranging from 0.5B to 70B. We consider both pre-trained and instruction-tuned models. The primary results are reported for QWen-1.5 as a wide range of pretrained checkpoints is available, enabling detailed analysis of the proposed scaling laws. Further results are included in Appendix A.

We evaluate LLMs on WikiText2 (Merity et al., 2016), SlimPajama (Soboleva et al., 2023), Alpaca (Taori et al., 2023), and MMLU (Hendrycks et al., 2021b;a). For WikiText2, SlimPajama, and Alpaca, we sub-sample the dataset used during search. For MMLU, we use lm-evaluation-harness (Gao et al., 2023) to report the average accuracy over all subsets.

Quantization methods We use MXINT-4 as the low-precision format and BF16 as the high precision format. We also consider FP4 for low precision, which has garnered increased attention in recent works (Liu et al., 2023b; Xia et al., 2024b; Zhang et al., 2023b; Xia et al., 2024a). For FP4, we use 2-bit exponent and 1-bit mantissa, which offers the highest performance without any postquantization fine-tuning, as per Dotzel et al. (2024). We quantize both weights and activations for MXINT-4, however activations are kept in BF16 for the FP4 experiments as activation quantization was found to cause a detrimental effect in model performance at this precision (Liu et al., 2023a).

Mixed-precision strategy For our primary experiments, we perform quantization at two granularities: layer-wise and matmul-wise. In the former, the quantization ratio is determined by the number of transformer layers casted to low precision. In the latter, we consider the precision for each individual matrix multiplication; for example, QKV projections, multiplication of the attention scores and MLP layers can each be quantized separately, even within the same layer. We find a solution for Equation (1) by running random search with a trial number of 50 at 1024 subsamples per iteration. We justify these choices in Appendix D and Appendix E. The inner loop of the search conducts post-training quantization (PTQ), and the entire search process involves no training.

Platform and GPU hours We perform experiments on a 20-node cluster with eight A6000 48GB GPUs, a 256-core AMD EPYC processor and 1024GB RAM in each node. Experiments of models larger than 30B are performed on a cluster of DGX A100 eight-GPU pods. The effective run time

of the experiments in total is approximately 15k A6000 GPU hours and 5k A100 GPU hours. We also spend around 1k GPU hours tuning search hyper-parameters, such as the number of trials.

4.2 SCALING LAW 1: SCALING WITH MODEL SIZES

(a) Absolute perplexity on SlimPajama at varying quantization ratios.

(b) Percentage change in perplexity at varying quantization ratios, relative to non-quantized baseline.

Figure 2: Results supporting *LLM-MPQ* Scaling Law 1 at matmul granularity. We show how perplexity on SlimPajama scales with increasing model sizes under various quantization ratios (Q_r values). Larger models can tolerate higher quantization ratios.

(a) Absolute perplexity on SlimPajama at varying quantization ratios.

(b) Percentage change in perplexity at varying quantization ratios, relative to non-quantized baseline.

Figure 3: Results supporting *LLM-MPQ* Scaling Law 1 at layer granularity. We show how perplexity on SlimPajama scales with increasing model sizes under various quantization ratios (Q_r values). Larger models can tolerate higher quantization ratios.

Firstly, we evaluate perplexity on the SlimPajama dataset at various quantization ratios and granularities to illustrate the overall loss landscape. This was chosen as the principal search task as perplexity on Alpaca showed less variance with varying quantization ratios, especially for larger models.²

For clarity, in Figure 2 and Figure 3 we plot the highest quantization ratio achievable at each granularity (i.e. 0.95 for layer wise and 0.99 for matmul wise) as well as a more modest quantization ratio (0.9 for layer wise and 0.95 for matmul wise), comparing to the non-quantized model ($Q_r = 0$) in each case. We also present zero-shot accuracy results on MMLU in Figure 4 and Figure 5, which follow a similar pattern, although more variability can be seen due to the potential bias introduced in the downstream task, although the trend can still be observed.

²A more detailed comparison between Alpaca and SlimPajama tasks is shown in Appendix C.

(a) Accuracy on MMLU at varying quantization ratios.

(b) Percentage change in accuracy at varying quantization ratios, relative to non-quantized baseline.

Figure 4: Results supporting *LLM-MPQ* Scaling Law 1 at matmul granularity. We show how accuracy on MMLU scale with increasing model sizes under various quantization ratios (Q_r values). Bigger models can tolerate higher quantization ratios.

(a) Accuracy on MMLU at varying quantization ratios.

(b) Percentage change in accuracy at varying quantization ratios, relative to non-quantized baseline.

Figure 5: Results supporting *LLM-MPQ* Scaling Law 1 at layer granularity. We show how accuracy on MMLU scale with increasing model sizes under various quantization ratios (Q_r values). Bigger models can tolerate higher quantization ratios.

Both experiments demonstrate that under a fixed quantization ratio, performance metrics improve for both mixed precision strategies as the model gets larger, supporting our first scaling law. To eliminate the natural scaling law effect of increased language modelling capability at larger model sizes, we evaluate the difference in perplexity compared with the unquantized version of each model, i.e. $\Delta perplexity = (ppl_q - ppl_{ori})/ppl_{ori}$. As shown in Figure 2 and Figure 3, from both the absolute perplexity perspective and $\Delta Perplexity$ perspective, the observed trend aligns with Scaling Law 1. More comprehensive results for SlimPajma perplexity are presented in Appendix A.

Although the experimental results support the first scaling law, it naturally leads to the question of the rate at which this scaling occurs. To further demonstrate our observation regarding Scaling Law 1, we can consider maximum achievable quantization ratio C_{max} under a maximum performance loss budget L_{max} . Using perplexity change at matmul granularity for the Qwen-1.5 model, we use an exponent model to fit model size about the maximum quantization ratio under various loss budgets L_{max} , i.e. $y = e^{kC_{max}+c}$. As shown in Figure 6, we find that for fixed perplexity changes of 5% 10% and 20%, the obtained parameters were (k = -11.68, c = 4.83), (k = -11.27, c = 3.35) and (k = -12.84, c = 1.86), respectively.

In Figure 6, we use $(1 - Q_r)$ on the x-axis to represent the percentage of high-precision components required. The findings indicate that larger models require an exponentially reduced num-

Figure 6: Fitted exponential models of model size around quantization ratio under various loss budgets. y-axis is in log-scale.

(a) Absolute perplexity on SlimPajama at varying quantization ratios.

(b) Percentage change in perplexity at varying quantization ratios, relative to non-quantized baseline.

Figure 7: Results supporting LLM-MPQ Scaling Law 1 for FP4-E2M1 precision.

ber of high-precision components for achieving a fixed model performance target (in perplexity or accuracy). It is also worth noting that the k values of the three fitted lines in Figure 6 are in close proximity, suggesting that scaling under various model performance constraints is consistent. This underscores the significance of Scaling Law 1, as it may suggest the future requirements for low-arithmetic computation could increase exponentially with model size growth. We thoroughly examine the potential implications of these laws in Section 5.

4.2.1 EXTENDING TO OTHER ARITHMETIC FORMATS

We also show that the proposed *LLM-MPQ* Quantization Scaling Laws can be extended to different arithmetic formats by demonstrating an example of FP4-E2M1 (floating-point 4-bit with 2-bit exponent and 1-bit mantissa), as discussed in Section 2.1. This format is more compact than MX-INT4 due to the shared exponent in MX formats, but offers a smaller dynamic range and resolution. As proposed by Dotzel et al. (2024), we consider weight-only quantization (with activations kept at 16-bit) for the precision allocation search. The results are presented in Figure 7. Although the quantization ratio is generally lower than that in Section 4.2 due to the limited dynamic range and resolution of FP4, the observed trend follows *LLM-MPQ* Scaling Law 1.

4.3 SCALING LAW 2: SCALING WITH QUANTIZATION GRANULARITIES

As stated in Section 2.1, recent LLM quantization methods adopt fine-grained quantization, meaning tensors are split into small blocks, quantized and then scaled individually. In this subsection, we empirically verify our Scaling Law 2 by performing mixed-precision quantization search at block sizes

(a) Performance degradation of Qwen-1.5-7B.

(b) Performance degradation of Qwen-1.5-14B.

Figure 8: Performance degradation of Qwen-1.5 models on SlimPajama for block-wise quantization at various quantization ratios. We only fit the data points with perplexity changes within 100%. Both a-xis and y-axis are in log-scale.

of 16, 32, 64, 128, 256, and 512. Additionally, we perform per-vector (per-row, per-column) scaled quantization (Dai et al., 2021) and per-tensor scaled quantization. In per-vector scaled quantization, each row of activations (corresponding to a column of weights) shares the same scaling factor. In per-tensor scaled quantization, all elements in a tensor share the same scaling factor. To fit per-vector and per-tensor quantization to the same plot, we consider the averaged number of elements in each vector or tensor as the block size.

Smaller block sizes enable lower quantization error and better model performance, since a block's scaling factor depends on the maximum element magnitude within the block. When a large scaling factor is assigned to accommodate the activation outliers (as discussed in Section 2.1), the round-off error of remaining elements in the block can cause performance degradation. However, decreasing the block sizes leads to higher average bitwidth, highlighting the trade-off between memory footprint and model performance in quantization granularity.

We aim to find a quantitative scaling law with quantization granularity for LLMs, that is, to inspect how the model performance changes with granularity. Figure 8 illustrates the perplexity change for the QWen-1.5-7B and 14B model relative to FP16 precision across various block sizes under various quantization budgets. In the figure, we observe the following trends:

- The perplexity change $(\Delta ppl = (ppl_q ppl_{ori})/ppl_{ori})$ increases with block size, i.e. higher granularity contributes to lower performance degradation.
- Given a target Δ ppl, smaller block sizes enable a larger quantization ratio.

To further illustrate Scaling Law 2, we fit a power function model of Δppl with respect to the unified the block size under various granularities (i.e. $y = Ax^k$) to show the impact of quantization granularity on model performance under various quantization ratios. Note that for quantization ratios beyond 0.95, we observe an explosion in Δppl , hence these values are excluded from the fitted model. We find the following model parameters for ratios of q = 0.5, 0.9, 0.95 in 7B respectively: (A = 0.53, k = 0.32), (A = 1.65, k = 0.62), (A = 3.57, k = 0.61), and in 14B respectively: (A = 0.63, k = 0.29), (A = 3.3, k = 0.37), and (A = 1, k = 0.63). We hope that this scaling law guides the future study of fine-grained quantization for LLMs.

5 DISCUSSION

Implications on AI Inference Hardware and System Designs A critical finding of this paper is the observed correlation between model size and quantization ratio, indicating that larger models can accommodate exponentially more low-precision components without performance degradation. This validates the recent trend of increasing support for low-precision arithmetic computation in Deep Learning accelerators such as GPUs and TPUs. For example, the tensor cores of the H100 SXM achieve 3958 TFLOPs when operating at FP8 precision, while the compute capacity is approximately halved to 1979 TFLOPs at FP16 precision (Choquette, 2022). The insight from the first *LLM-MPQ* scaling law, showing that larger LLMs require more low-precision computational

resources compared to their smaller counterparts, highlights the **need for increased low-precision resources in future hardware devices** for efficient serving of large models.

Additionally, we've shown through the second *LLM-MPQ* scaling law that finer granularity in mixed-precision approaches enables a higher quantization ratio when the model size is fixed. This insight has direct implications in the design of parallelization strategies for multi-device or multi-node environments (Zheng et al., 2022; Li et al., 2023b). Coarse-grained mixed-precision strategies such as layer-wise mappings can generally be handled as a device allocation problem. Meanwhile, finer-grained mixed-precision approaches such as at the vector/column level necessitate more careful handling, potentially demanding compiler-level partitioning strategies or even dedicated hardware designs to realize the theoretical performance improvements.

Extension to Further Architectures and Arithmetic Formats It is natural to consider whether the observed findings in this work extend to larger LLMs, such as the recently released Llama-3.1-405b (Dubey et al., 2024), although the range of available pre-trained checkpoints is limited, due to the significant cost of training larger models. Additionaly, the same trends could be explored in different architectures including Mixture-of-Experts (MoE) models such as Mixtral (Jiang et al., 2024) and multimodal models such as Pixtral (Mistral AI). Finally, further arithmetic formats such as ternary (Chen et al., 2024) and additional configurations from the MXINT (Rouhani et al., 2023a) standard offer opportunities for further exploration. One specific challenge is the quantization approach used in this paper is emulated quantization following Zhang et al., where it incurs more computation than natively supported FP16 inference, hence impedes the evaluation on larger models (eg. 400B). A possible future direction would be to test these scaling laws on large models using actual MXINT4 and FP4 quantization upon the availability of compatible hardware.

LLM Evaluation: Navigating Layers of Complexity A number of challenges were faced during experimentation regarding the reproducibility of accuracy and perplexity metrics for pre-trained models. For example, the evaluation methodology for Llama-2 was extrapolated from the official repository ³ since the official evaluation code was not released, leading to a gap between the reported performance and our own evaluation. These discrepancies highlight the importance of open and reliable benchmarks for pretrained language models.

An additional observation was that despite the breadth of downstream tasks used to evaluate LLMs in the literature, not all are effective in capturing the scaling trend of LLM performance at various quantization methodologies. Some widely reported metrics, such as Wikitext2 and LAMBADA (Paperno et al., 2016), showed negligible sensitivity to the quantization ratio in performance degradation across the models we evaluated, showing that the bias introduced by various downstream tasks needs to be carefully considered when searching for the optimal quantization strategy for deployment. The core results in this work were reported using a subset of the SlimPajama dataset, as this led to a higher sensitivity to quantization ratio compared to instruction-tuning datasets such as Alpaca, as shown in Appendix C. Another reason for this decision was to ensure that quantization search was performed under a similar data distribution to common LLM pretraining datasets.

Hypotheses on other Efficient AI Methods While we focused primarily on mixed-precision quantization in this work, a clear direction for future research involves examining scaling trends for other AI efficiency methods, such as sparsity and low-rank approximations. We hypothesize that the scaling laws for such methods will closely resemble the scaling laws for quantization introduced in this work. More broadly, we hypothesize the existence of **a broader scaling law governing how the ratio of approximate compute to exact compute scales with model sizes**, and the granularity at which approximate compute is applied.

6 CONCLUSION

In this paper, we present two scaling laws of the mixed precision quantization of LLMs verified by extensive experiments, *i.e.*, *LLM-MPQ* scaling law 1) the quantization ratio for a fixed loss target exponentially scales with the model size. 2) The max quantization ratio achievable for a given loss target increases with finer quantization granularity. These two laws offer a guidance to further studies on LLM quantization, and indicate a potential scaling trend for designing low-precision LLM inference accelerators.

³Official repository for the LLaMA model: github.com/meta-llama

REFERENCES

- Hicham Badri and Appu Shaji. Half-quadratic quantization of large machine learning models, November 2023. URL https://mobiusml.github.io/hqq_blog/.
- Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, Xiaodong Deng, Yang Fan, Wenbin Ge, Yu Han, Fei Huang, et al. Qwen technical report. *arXiv preprint arXiv:2309.16609*, 2023.
- Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are few-shot learners. *Advances in neural information processing systems*, 33:1877–1901, 2020.
- Jerry Chee, Yaohui Cai, Volodymyr Kuleshov, and Christopher M De Sa. Quip: 2-bit quantization of large language models with guarantees. *Advances in Neural Information Processing Systems*, 36, 2024.
- Tianqi Chen, Zhe Li, Weixiang Xu, Zeyu Zhu, Dong Li, Lu Tian, Emad Barsoum, Peisong Wang, and Jian Cheng. Ternaryllm: Ternarized large language model. *arXiv preprint arXiv:2406.07177*, 2024.
- Jack Choquette. Nvidia hopper gpu: Scaling performance. In 2022 IEEE Hot Chips 34 Symposium (HCS), pp. 1–46. IEEE Computer Society, 2022.
- Steve Dai, Rangha Venkatesan, Mark Ren, Brian Zimmer, William Dally, and Brucek Khailany. Vs-quant: Per-vector scaled quantization for accurate low-precision neural network inference. *Proceedings of Machine Learning and Systems*, 3:873–884, 2021.
- Bita Darvish Rouhani, Daniel Lo, Ritchie Zhao, Ming Liu, Jeremy Fowers, Kalin Ovtcharov, Anna Vinogradsky, Sarah Massengill, Lita Yang, Ray Bittner, et al. Pushing the limits of narrow precision inferencing at cloud scale with microsoft floating point. *Advances in neural information processing systems*, 33:10271–10281, 2020.
- Tim Dettmers, Mike Lewis, Younes Belkada, and Luke Zettlemoyer. Gpt3. int8 (): 8-bit matrix multiplication for transformers at scale. *Advances in Neural Information Processing Systems*, 35: 30318–30332, 2022.
- Tim Dettmers, Ruslan Svirschevski, Vage Egiazarian, Denis Kuznedelev, Elias Frantar, Saleh Ashkboos, Alexander Borzunov, Torsten Hoefler, and Dan Alistarh. Spqr: A sparse-quantized representation for near-lossless llm weight compression. *arXiv preprint arXiv:2306.03078*, 2023.
- Jordan Dotzel, Yuzong Chen, Bahaa Kotb, Sushma Prasad, Gang Wu, Sheng Li, Mohamed S Abdelfattah, and Zhiru Zhang. Learning from students: Applying t-distributions to explore accurate and efficient formats for llms. *arXiv preprint arXiv:2405.03103*, 2024.
- Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models. *arXiv preprint arXiv:2407.21783*, 2024.
- William Fedus, Barret Zoph, and Noam Shazeer. Switch transformers: Scaling to trillion parameter models with simple and efficient sparsity, 2022. URL https://arxiv.org/abs/2101. 03961.
- Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and Dan Alistarh. Gptq: Accurate post-training quantization for generative pre-trained transformers. *arXiv preprint arXiv:2210.17323*, 2022.
- Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman, Sid Black, Anthony DiPofi, Charles Foster, Laurence Golding, Jeffrey Hsu, Alain Le Noac'h, Haonan Li, Kyle McDonell, Niklas Muennighoff, Chris Ociepa, Jason Phang, Laria Reynolds, Hailey Schoelkopf, Aviya Skowron, Lintang Sutawika, Eric Tang, Anish Thite, Ben Wang, Kevin Wang, and Andy Zou. A framework for few-shot language model evaluation, 12 2023. URL https://zenodo.org/records/ 10256836.
- Dan Hendrycks, Collin Burns, Steven Basart, Andrew Critch, Jerry Li, Dawn Song, and Jacob Steinhardt. Aligning ai with shared human values. *Proceedings of the International Conference on Learning Representations (ICLR)*, 2021a.

- Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob Steinhardt. Measuring massive multitask language understanding. *Proceedings of the International Conference on Learning Representations (ICLR)*, 2021b.
- Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, Tom Hennigan, Eric Noland, Katie Millican, George van den Driessche, Bogdan Damoc, Aurelia Guy, Simon Osindero, Karen Simonyan, Erich Elsen, Jack W. Rae, Oriol Vinyals, and Laurent Sifre. Training compute-optimal large language models, 2022. URL https://arxiv.org/abs/ 2203.15556.
- Wei Huang, Haotong Qin, Yangdong Liu, Yawei Li, Xianglong Liu, Luca Benini, Michele Magno, and Xiaojuan Qi. Slim-llm: Salience-driven mixed-precision quantization for large language models. arXiv preprint arXiv:2405.14917, 2024.
- Albert Q Jiang, Alexandre Sablayrolles, Antoine Roux, Arthur Mensch, Blanche Savary, Chris Bamford, Devendra Singh Chaplot, Diego de las Casas, Emma Bou Hanna, Florian Bressand, et al. Mixtral of experts. arXiv preprint arXiv:2401.04088, 2024.
- Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B. Brown, Benjamin Chess, Rewon Child, Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language models, 2020.
- Shiyao Li, Xuefei Ning, Ke Hong, Tengxuan Liu, Luning Wang, Xiuhong Li, Kai Zhong, Guohao Dai, Huazhong Yang, and Yu Wang. Llm-mq: Mixed-precision quantization for efficient llm deployment. In *The Efficient Natural Language and Speech Processing Workshop with NeurIPS*, volume 9, 2023a.
- Zhuohan Li, Lianmin Zheng, Yinmin Zhong, Vincent Liu, Ying Sheng, Xin Jin, Yanping Huang, Zhifeng Chen, Hao Zhang, Joseph E. Gonzalez, and Ion Stoica. Alpaserve: Statistical multiplexing with model parallelism for deep learning serving, 2023b.
- Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang, Wei-Ming Chen, Wei-Chen Wang, Guangxuan Xiao, Xingyu Dang, Chuang Gan, and Song Han. Awq: Activation-aware weight quantization for on-device llm compression and acceleration. *Proceedings of Machine Learning and Systems*, 6: 87–100, 2024.
- Jing Liu, Ruihao Gong, Xiuying Wei, Zhiwei Dong, Jianfei Cai, and Bohan Zhuang. Qllm: Accurate and efficient low-bitwidth quantization for large language models. *arXiv preprint arXiv:2310.08041*, 2023a.
- Shih-yang Liu, Zechun Liu, Xijie Huang, Pingcheng Dong, and Kwang-Ting Cheng. Llm-fp4: 4-bit floating-point quantized transformers. *arXiv preprint arXiv:2310.16836*, 2023b.
- Naveen Mellempudi, Sudarshan Srinivasan, Dipankar Das, and Bharat Kaul. Mixed precision training with 8-bit floating point. *arXiv preprint arXiv:1905.12334*, 2019.
- Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture models, 2016.
- Paulius Micikevicius, Sharan Narang, Jonah Alben, Gregory Diamos, Erich Elsen, David Garcia, Boris Ginsburg, Michael Houston, Oleksii Kuchaiev, Ganesh Venkatesh, et al. Mixed precision training. arXiv preprint arXiv:1710.03740, 2017.
- Mistral AI. Announcing pixtral 12b. URL https://mistral.ai/news/pixtral-12b/.
- Denis Paperno, Germán Kruszewski, Angeliki Lazaridou, Quan Ngoc Pham, Raffaella Bernardi, Sandro Pezzelle, Marco Baroni, Gemma Boleda, and R. Fernández. The lambada dataset: Word prediction requiring a broad discourse context. *ArXiv*, abs/1606.06031, 2016.
- Yeonhong Park, Jake Hyun, SangLyul Cho, Bonggeun Sim, and Jae W Lee. Any-precision llm: Low-cost deployment of multiple, different-sized llms. *arXiv preprint arXiv:2402.10517*, 2024.

- Tim Pearce and Jinyeop Song. Reconciling kaplan and chinchilla scaling laws, 2024. URL https: //arxiv.org/abs/2406.12907.
- Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language models are unsupervised multitask learners. 2019. URL https://api. semanticscholar.org/CorpusID:160025533.
- Bita Darvish Rouhani, Ritchie Zhao, Venmugil Elango, Rasoul Shafipour, Mathew Hall, Maral Mesmakhosroshahi, Ankit More, Levi Melnick, Maximilian Golub, Girish Varatkar, et al. Zhaoxia (summer) deng, sam naghshineh, jongsoo park, and maxim naumov. with shared microexponents, a little shifting goes a long way. In *Proceedings of the 50th Annual International Symposium on Computer Architecture, ISCA*, pp. 17–21, 2023a.
- Bita Darvish Rouhani, Ritchie Zhao, Ankit More, Mathew Hall, Alireza Khodamoradi, Summer Deng, Dhruv Choudhary, Marius Cornea, Eric Dellinger, Kristof Denolf, et al. Microscaling data formats for deep learning. *arXiv preprint arXiv:2310.10537*, 2023b.
- Wenqi Shao, Mengzhao Chen, Zhaoyang Zhang, Peng Xu, Lirui Zhao, Zhiqian Li, Kaipeng Zhang, Peng Gao, Yu Qiao, and Ping Luo. Omniquant: Omnidirectionally calibrated quantization for large language models. arXiv preprint arXiv:2308.13137, 2023.
- Daria Soboleva, Faisal Al-Khateeb, Robert Myers, Jacob R Steeves, Joel Hestness. and Nolan Dev. SlimPajama: A 627B token cleaned and deduplicated version of RedPajama. https://www.cerebras.net/blog/ slimpajama-a-627b-token-cleaned-and-deduplicated-version-of-redpajama. 2023. URL https://huggingface.co/datasets/cerebras/SlimPajama-627B.
- Xiao Sun, Jungwook Choi, Chia-Yu Chen, Naigang Wang, Swagath Venkataramani, Vijayalakshmi Viji Srinivasan, Xiaodong Cui, Wei Zhang, and Kailash Gopalakrishnan. Hybrid 8-bit floating point (hfp8) training and inference for deep neural networks. *Advances in neural information processing systems*, 32, 2019.
- Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos Guestrin, Percy Liang, and Tatsunori B. Hashimoto. Stanford alpaca: An instruction-following llama model. https://github.com/tatsu-lab/stanford_alpaca, 2023.
- Gemma Team, Morgane Riviere, Shreya Pathak, Pier Giuseppe Sessa, Cassidy Hardin, Surya Bhupatiraju, Léonard Hussenot, Thomas Mesnard, Bobak Shahriari, Alexandre Ramé, et al. Gemma 2: Improving open language models at a practical size. *arXiv preprint arXiv:2408.00118*, 2024.
- Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation and fine-tuned chat models. *arXiv preprint arXiv:2307.09288*, 2023.
- Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel, Barret Zoph, Sebastian Borgeaud, Dani Yogatama, Maarten Bosma, Denny Zhou, Donald Metzler, et al. Emergent abilities of large language models. *arXiv preprint arXiv:2206.07682*, 2022a.
- Xiuying Wei, Yunchen Zhang, Xiangguo Zhang, Ruihao Gong, Shanghang Zhang, Qi Zhang, Fengwei Yu, and Xianglong Liu. Outlier suppression: Pushing the limit of low-bit transformer language models. *Advances in Neural Information Processing Systems*, 35:17402–17414, 2022b.
- Xiuying Wei, Yunchen Zhang, Yuhang Li, Xiangguo Zhang, Ruihao Gong, Jinyang Guo, and Xianglong Liu. Outlier suppression+: Accurate quantization of large language models by equivalent and optimal shifting and scaling. arXiv preprint arXiv:2304.09145, 2023.
- Haojun Xia, Zhen Zheng, Xiaoxia Wu, Shiyang Chen, Zhewei Yao, Stephen Youn, Arash Bakhtiari, Michael Wyatt, Donglin Zhuang, Zhongzhu Zhou, et al. Fp6-llm: Efficiently serving large language models through fp6-centric algorithm-system co-design. arXiv preprint arXiv:2401.14112, 2024a.

- Haojun Xia, Zhen Zheng, Xiaoxia Wu, Shiyang Chen, Zhewei Yao, Stephen Youn, Arash Bakhtiari, Michael Wyatt, Donglin Zhuang, Zhongzhu Zhou, et al. {Quant-LLM}: Accelerating the serving of large language models via {FP6-Centric}{Algorithm-System}{Co-Design} on modern {GPUs}. In 2024 USENIX Annual Technical Conference (USENIX ATC 24), pp. 699–713, 2024b.
- Guangxuan Xiao, Ji Lin, Mickael Seznec, Hao Wu, Julien Demouth, and Song Han. Smoothquant: Accurate and efficient post-training quantization for large language models. In *International Conference on Machine Learning*, pp. 38087–38099. PMLR, 2023.
- Shulin Zeng, Jun Liu, Guohao Dai, Xinhao Yang, Tianyu Fu, Hongyi Wang, Wenheng Ma, Hanbo Sun, Shiyao Li, Zixiao Huang, et al. Flightllm: Efficient large language model inference with a complete mapping flow on fpgas. In *Proceedings of the 2024 ACM/SIGDA International Sympo*sium on Field Programmable Gate Arrays, pp. 223–234, 2024.
- Cheng Zhang, Jianyi Cheng, Zhewen Yu, and Yiren Zhao. Mase: An efficient representation for software-defined ml hardware system exploration.
- Cheng Zhang, Jianyi Cheng, Ilia Shumailov, George A Constantinides, and Yiren Zhao. Revisiting block-based quantisation: What is important for sub-8-bit llm inference? *arXiv preprint arXiv:2310.05079*, 2023a.
- Cheng Zhang, Jianyi Cheng, George A Constantinides, and Yiren Zhao. Lqer: Low-rank quantization error reconstruction for llms. *arXiv preprint arXiv:2402.02446*, 2024.
- Yijia Zhang, Sicheng Zhang, Shijie Cao, Dayou Du, Jianyu Wei, Ting Cao, and Ningyi Xu. Afpq: Asymmetric floating point quantization for llms. *arXiv preprint arXiv:2311.01792*, 2023b.
- Lianmin Zheng, Zhuohan Li, Hao Zhang, Yonghao Zhuang, Zhifeng Chen, Yanping Huang, Yida Wang, Yuanzhong Xu, Danyang Zhuo, Eric P. Xing, Joseph E. Gonzalez, and Ion Stoica. Alpa: Automating inter- and intra-operator parallelism for distributed deep learning, 2022.
- Lancheng Zou, Wenqian Zhao, Shuo Yin, Chen Bai, Qi Sun, and Bei Yu. Bie: Bi-exponent block floating-point for large language models quantization. In *Forty-first International Conference on Machine Learning*, 2024.

A SLIMPAJAMA PERPLEXITY FOR DIFFERENT MODEL FAMILIES

In this section, we show the complete set of results for SlimPajama perplexity and percentage change Δppl compared to the non-quantized baseline for QWen1.5, Llama2 and Gemma2 models across a range of quantization ratio Q_r . The ratios are selected in log scale intervals to give an overview of the quantization ratio space and focus on the maximal ratio achievable across models. Note that the resolution for layer-wise mixed quantization is coarser than that for matmul-wise, due to the reduced granularity. Specifically, we evaluate up to a ratio of 0.99 for matmul-wise quantization.

Figure 9: qwen on pajama in matmul-wise.

Figure 10: qwen on pajama in layer-wise.

Figure 11: llama2 on pajama in matmul-wise.

Figure 12: llama2 on pajama in layer-wise.

Figure 13: gemma2 on pajama in matmul-wise.

Figure 14: gemma2 on pajama in layer-wise.

B DOWNSTREAM TASK METRIC FOR QWEN1.5

In this section, we show the complete set of evaluation (more Q_r ratios) for the MMLU downstream task. We report the MMLU evaluation accuracy for Qwen 1.5 models, as well as Δ accuracy.

Figure 15: qwen on mmlu in matmul-wise.

Figure 16: qwen on mmlu in layer-wise.

C COMPARING ALPACA AND SLIMPAJAMA SEARCH PERPLEXITY

In this section, we show that the observations made in this paper are general and extend to other pretraining datasets such as Alpaca. Figure 17 shows similar results for Alpaca compared to SlimPajama in Figure 18.

Figure 17: qwen on alpaca in layer-wise.

Figure 18: qwen on pajama in layer-wise.

D AN ABLATION STUDY ON NUMBER OF TRIALS

To illustrate the selection for our trial number for the random search, we demonstrate the result for setting the trial numbers to 10, 20, 50, 100, and 200 in a random search on QWen1.5 7B model with $Q_r = 0.9$. As shown in Figure 19, our selection of 50 search trails reaches similar results with longer trails. Hence, it is selected as the trial number for our search.

Figure 19: Best perplexity reached with given search trails.

E AN ABLATION STUDY ON NUMBER OF SUB-SAMPLES

To illustrate the selection for our sub-sample sizes for the random search, we show the effect on perplexity values over different numbers of sub-samples for the QWen-1.5-7B model on SlimPajama. In Figure 20, the curve saturates at 1024 and is selected as the number of samples for our search.

Figure 20: Best perplexity reached under given sub-sample size.

F LAMBADA RUNS WITH OPT FAMILY

Here we show that not all downstream tasks effectively reflect the performance of quantized LLMs, especially for older models, such as the OPT family. Figure 21 shows our results of OPT family on the LAMBADA (Paperno et al., 2016). The loss of accuracy is negligible when scaling to larger model sizes.

Figure 21: qwen on pajama in layer-wise.