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ABSTRACT

Post-training quantization of Large Language Models (LLMs) has proven effec-
tive in reducing the computational requirements for running inference on these
models. In this study, we focus on a straightforward question: When aiming for
a specific accuracy or perplexity target for low-precision quantization, how many
high-precision numbers or calculations are required to preserve as we scale LLMs
to larger sizes? We first introduce a critical metric named the quantization ratio,
which compares the number of parameters quantized to low-precision arithmetic
against the total parameter count. Through extensive and carefully controlled ex-
periments across different model families, arithmetic types, and quantization gran-
ularities (e.g. layer-wise, matmul-wise), we identify two central phenomenons. 1)
The larger the models, the better they can preserve performance with an increased
quantization ratio, as measured by perplexity in pre-training tasks or accuracy in
downstream tasks. 2) The finer the granularity of mixed-precision quantization
(e.g., matmul-wise), the more the model can increase the quantization ratio. We
believe these observed phenomena offer valuable insights for future AI hardware
design and the development of advanced Efficient AI algorithms.

1 INTRODUCTION

Large Language Models (LLMs) have demonstrated remarkable performance across a range of nat-
ural language processing (NLP) tasks (Brown et al., 2020), and state-of-the-art models have ranged
from 1.6B parameters (Radford et al. (2019)) to 1T parameters (Fedus et al. (2022)) in recent years.
Recent work has driven the development of even larger models given findings that LLMs exhibit
emergent capabilities at increased parameter counts (Wei et al., 2022a). As such, researchers have
endeavoured to understand the scaling laws of LLMs by characterising how the required number of
training tokens scales with parameter count to train compute-optimal models under a fixed compute
budget (Kaplan et al. (2020), Hoffmann et al. (2022)). These works provide insight on how to best
allocate resources in training increasingly large LLMs.

Despite recent scaling trends, the substantial size of LLMs and their accompanying computational
demands require significant energy and hardware resources. For instance, inference deployment of
the 405B parameter LLaMA-3.1 model (Dubey et al., 2024) requires 8 NVIDIA H100 GPUs to
store its 427GB of model weights even under FP8 quantization, and consumes over 4500 Watts of
power (based on the average power consumption of 600W per H100 GPU). As such, quantization is
emerging as a promising solution to increase the accessibility of LLMs by reducing their memory
requirement and inference cost. Prior work has shown that weights and activations in pretrained
transformer blocks often yields magnitude outliers, which has been addressed by casting outliers
to high precision, while quantizing the rest of the network to low precision (Dettmers et al., 2022).
Such mixed-precision partitioning has been shown to preserve model performance with significant
savings in memory footprint and model inference serving throughput.
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Figure 1: Change in accuracy on the MMLU dataset for
models in the Qwen family quantized to MXINT4 at various
Quantization ratios, defined as Low Precision Parameters

Total Parameters .

With the increased usage of quantiza-
tion to address the challenges of LLM
deployment, and motivated by the
importance of understanding system-
atic scaling laws in guiding further
research in mixed-precision quanti-
zation, we seek to answer an under-
explored question: in an optimal
mixed-precision mapping, how does
the required ratio of low precision
components change as model size in-
creases? Alternatively, what are the
scaling laws for mixed quantization
in LLMs?

We define the mixed-quantization
ratio Qr as the ratio of parame-
ters using low-precision arithmetic to
the total number of parameters (i.e.
Low Precision Parameters

Total Parameters ), and consider the scenario where no finetuning takes place after quantization.
To illustrate our main results, we show how performance scales with both model size and mixed-
quantization ratios for Qwen models in Figure 1. The figure demonstrates our key observation that as
model size increases, higher quantization ratios yield a lower performance penalty. In fact, through
extensive and carefully controlled experiments, we show that the number of low-precision compo-
nents scales exponentially relative to the growth in model size under a fixed performance budget.

Additionally, we examine the practical aspects of deploying mixed-precision LLMs, namely the
granularities at which quantization can be applied (i.e. per transformer layer, matrix multiply op-
eration, etc), and how this affects performance degradation as parameter count increases. We find
that mixed-precision LLMs benefit greatly from quantization at finer granularities, by effectively
leveraging the unstructured distribution of outliers in weights and activations.

Our main contributions are as follows.

• We conduct a series of carefully designed, controlled experiments across various model
families, arithmetic types, and quantization granularities to examine the scaling behaviour
of LLMs in the context of mixed-precision quantization.

• We summarize the results and formulate two scaling phenomena, named LLM-MPQ scaling
laws, for mixed quantization in LLMs.

• We discuss the potential benefits and implications of the proposed scaling laws for future
AI inference systems and hardware designs, arguing that the advancement of low-precision
arithmetic hardware could facilitate the scaling of future LLM inference.

2 BACKGROUND

2.1 QUANTIZATION OUTLIERS AND MIXED QUANTIZATION

Weight and Activation Outliers in LLMs A weight or activation value is considered an outlier
when there is a significant deviation from its mean distribution. These values make traditional uni-
form quantization less effective due to the large incurred dynamic range. In fact, activation outliers
have been observed more frequently in large transformer-based models (Wei et al., 2022b; Zhang
et al., 2023a) as deeply cascaded layers accumulate quantization errors. To address this problem, two
strategies are widely adopted; in weight-only quantization, weights are casted to low precision while
activations are left in a higher-precision format such as FP16 or BF16 (Frantar et al., 2022; Chee
et al., 2024; Lin et al., 2024). Meanwhile, weight-activation quantization relies on methods such
magnitude transfer from activations to weights using invertible scale matrices (Xiao et al., 2023) to
alleviate the effect of activation outliers before quantizing both weights and activations (Wei et al.,
2023; Xiao et al., 2023; Shao et al., 2023).
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Recent works have proposed novel numerical formats with shared scaling/exponent components,
which better accommodate the dynamic range of outliers (Zhang et al., 2023a; Rouhani et al.,
2023a; Zou et al., 2024). For example, MXINT (Darvish Rouhani et al., 2020) is new standard
for hardware-efficient numerical formats sharing an exponent across a block of mantissas (Rouhani
et al., 2023b). The hardware efficiency of these methods often outperforms standard low-precision
floating-point computation, although custom hardware support is required to be used in practice.

Mixed-precision quantization Mixed precision approaches involve partitioning a model’s pa-
rameters into both high-precision and low-precision components, which have been shown to better
preserve model performance relative to uniform quantization. This is primarily seen in models that
exhibit different sensitivities to quantization at various layers. Some mixed-precision LLM quanti-
zation work adopts the concept of weight salience to guide the search for fine-grained bit allocation.
The first order (Li et al., 2023a) or second order weight gradient (Huang et al., 2024) have been used
to form such salience metrics, such that salient layers are left in higher precision while the rest are
casted to low precision. There are also works performing the search in an end-to-end style with the
quantized model performance as the objective, such as the accuracy on a downstream task (Zhang
et al., 2023a). In both cases, mixed-precision can be seen as a promising approach to provide loss-
less reduction in LLM memory requirements, reducing average bitwidths below levels achievable
through uniform quantization (as in Badri & Shaji (2023); Lin et al. (2024); Chee et al. (2024)).

Mixed-precision inference Mixed-precision inference methods targeting GPUs usually adopt reg-
ular mixed-precision strategies and computation patterns; The authors of GPTQ3.int8() (Dettmers
et al., 2022) decompose the matrix multiplication in every linear layer into two submatrix-
multiplications based on the activation magnitudes, achieving 2-3× inference speedup by casting
the low-magnitude submatrix to low precision. SpQR (Dettmers et al., 2023) represents a weight
matrix with grouped 3-bit integers and less than 1% sensitive weight elements with FP16 values,
achieving 2× speed up compared to a quantized and sparse PyTorch baseline. These approaches en-
able reducing model size, but additional careful treatment is needed to improve inference throughput.
For example, in Li et al. (2023a), mixed precision LLM quantization at 2-bit and 3-bit showed no
speedup compared to 4-bit, due to less efficient utilization of memory bandwidth. On the other hand,
Any-Precision LLM (Park et al., 2024) achieve throughput scaling at various precisions by provid-
ing CUDA kernels with a novel weight packing approach following a bitplane layout, achieving
1.3-1.8× speedup on mobile and edge devices. Additionaly, works such as FlightLLM achieve high
throughput by leveraging custom hardware designs (Zeng et al., 2024).

Mixed-precision training Mixed-precision quantization has also been adopted in training to re-
duce the large memory footprint of gradient descent, which requires storage of optimizer states and
gradients in addition to forward activations. It’s been shown the training process can tolerate ag-
gressive quantization and correct quantization noise in some components. Micikevicius et al. (2017)
is the pioneering work proposing storage of all weights, activations and gradients in FP16, while
updating a copy of weights in FP32. This work also proposed scaling up the forward pass loss
and unscaling the gradient before weight update to avoid underutilization of the FP16 representable
range, leading to half the memory requirement and speed-ups of 2-6× relative to FP32 training.

Recently, more aggressive quantization has been studied for mixed-precision training. Mellempudi
et al. (2019) trains models with E5M2 FP8, maintaining a master copy of the weights in FP16,
and dynamically adjusting the scaling factor every few iterations. Hybrid-FP8 (Sun et al., 2019)
improves FP8 training by using E4M3 for forward propagation and E5M2 for backward propagation,
leading to matching performance to models trained with FP32. Popular implementation of FP8
mixed-precision training like TransformerEngine1 has achieved a training acceleration around 3-4×
compared to FP16 mixed-precision training.

2.2 SCALING LAWS OF LARGE LANGUAGE MODEL TRAINING

Enhanced language modelling performance at larger model sizes has led to interests in characterising
scaling laws of LLM performance with respect to parameter count, training compute budget and
number of training tokens. Kaplan et al. (2020) showed, though empirical analysis, that Transformer

1TransformerEngine: https://github.com/NVIDIA/TransformerEngine
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performance follows a power law trend with each of these factors. The authors proposed that for any
9× increase in parameter count, dataset size should be increased by a factor of approximately 5×
to avoid a performance penalty, suggesting that higher performance gains are observed from scaling
parameter count than dataset size under a fixed compute budget. Contrastingly, Hoffmann et al.
(2022) argue that existing open weight LLMs are undertrained relative to their size, and parameter
count should be increased in line with the number of training tokens. The findings from Pearce &
Song (2024) later explained the discrepancy between Kaplan and Hoffman, reaffirming the validity
of the Chincilla scaling laws and highlighting the need for high quality datasets for Language Model
training.

Despite the reconciliation of Kaplan’s scaling laws, we see the continued trend of scaling LLM
sizes, partly validated by the findings from Wei et al. (2022a) regarding the unpredictable emer-
gence of abilities in larger LLMs. The authors characterise how LLM performance in few-shot tasks
including arithmetic, question answering and multi-task language understanding emerges beyond
certain size thresholds, despite not being observable in small models - for example, performance on
arithmetic tasks from BIG-Bench is approximately random for GPT-3 models up to 13B parameters
and LaMDA models up to 68B parameters, sharply rising thereafter. The authors note there are few
compelling explanations for these emergence phenomena, although the required model depth for
reasoning tasks may be correlated with the number of reasoning steps. At any rate, these findings
raise the question of what emergent phenomena may observed for even larger models, and highlight
the importance of understanding scaling laws across a wide range of model sizes, without extrapo-
lating observations from small models.

3 SCALING LAWS FOR MIXED QUANTIZATION

Consider a model F (Wl,Wh), parameterized by low and high-precision components, Wl and Wh.
We define a model’s quantization ratio Qr as the ratio of low-precision parameters to the total num-
ber of parameters, i.e. ∥Wl∥0

∥Wh∥0+∥Wl∥0
, where ∥·∥0 computes the l0 norm. The optimal allocation of

low-precision parameters for a model under a fixed quantization ratio, described by W opt
l and W opt

h ,
can be found through the following optimization problem, where L(·) is the task loss.

W opt
l ,W opt

h = argmin
Wl,Wh;s.t.

∥Wl∥0
∥Wh∥0+∥Wl∥0

=Qr

L(F (Wl,Wh)) (1)

Equation 1 outlines the optimization problem used to evaluate the hypothesized scaling laws. In this
work, we find an approximate solution to the problem using a random search algorithm to allocate
a numerical precision to each component of the network (i.e. layer or matrix multiply operation,
according to the granularity). Furthermore, no weight training is performed after quantization, such
as to observe the immediate performance degradation. We describe the observed scaling laws in this
section, and present empirical evidence to support them in Section 4.

LLM-MPQ Scaling Law 1: Scaling with Model Sizes

Given a fixed loss budget Lmax, the maximum achievable mixed precision quantization ratio
Qr = ∥Wl∥0

∥Wh∥0+∥Wl∥0
increases as the model size (∥W opt

h ∥0 + ∥W opt
l ∥0) increases.

The first scaling law posits our central hypothesis: as model size grows, so does the required quan-
tization ratio, under a fixed task loss target. This aligns with findings from related research, such as
AWQ (Lin et al., 2024), Quip (Chee et al., 2024) and LQER (Zhang et al., 2024), which empirically
demonstrated that larger models can accommodate more aggressive quantization levels. An alter-
native view, also reflected in related work, is that for a fixed quantization ratio, task loss decreases
when the model size becomes larger.
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LLM-MPQ Scaling Law 2: Scaling with Quantization Granularities

Given a fixed loss budget Lmax, the maximum achievable mixed precision quantization ratio
Qr = ∥Wl∥0

∥Wh∥0+∥Wl∥0
increases if a finer granularity is applied to W opt

l and W opt
h .

The second scaling law focuses on the granularity of quantization, which can refer to the size of the
group in which quantization is applied, e.g., per-vector, per-tensor or per layer. This hypothesis is
reflected by observations from previous studies like Dettmers et al. (2022), which noted that specific
parameter groups required high-precision components to avoid performance degradation. At lower
quantization granularities, a more significant portion of the high-precision quantization budget is
allocated to operations that could be casted to low precision without a performance penalty. This
effect is particularly pronounced when the distribution of outliers is highly irregular.

Many studies have empirically demonstrated that larger models are more amenable to quantization
(Dettmers et al., 2022; Xiao et al., 2023), and in this work, we offer a systematic perspective on
this finding by formulating the aforementioned Scaling Laws. Crucially, we illustrate that model
size (Law 1) exhibit exponential scaling relative to the “ease of quantization” while quantization
granularity (Law 2) exhibit power function scaling relative to the “ease of quantization” in a
mixed-precision setting. These observation suggest that the hidden law demonstrated under mixed
quantization settings are non-trivial. Here, we refer to the “ease of quantization” as the proportion
of high-precision components necessary to maintain model performance.

4 EXPERIMENTS

4.1 EXPERIMENT SETUP

Models and benchmarks We evaluate a range of model families, including LLama-2 (Touvron
et al., 2023), Gemma-2 (Team et al., 2024) and QWen-1.5 (Bai et al., 2023), at sizes ranging from
0.5B to 70B. We consider both pre-trained and instruction-tuned models. The primary results are
reported for QWen-1.5 as a wide range of pretrained checkpoints is available, enabling detailed
analysis of the proposed scaling laws. Further results are included in Appendix A.

We evaluate LLMs on WikiText2 (Merity et al., 2016), SlimPajama (Soboleva et al., 2023), Al-
paca (Taori et al., 2023), and MMLU (Hendrycks et al., 2021b;a). For WikiText2, SlimPa-
jama, and Alpaca, we sub-sample the dataset used during search. For MMLU, we use
lm-evaluation-harness (Gao et al., 2023) to report the average accuracy over all subsets.

Quantization methods We use MXINT-4 as the low-precision format and BF16 as the high pre-
cision format. We also consider FP4 for low precision, which has garnered increased attention in
recent works (Liu et al., 2023b; Xia et al., 2024b; Zhang et al., 2023b; Xia et al., 2024a). For FP4,
we use 2-bit exponent and 1-bit mantissa, which offers the highest performance without any post-
quantization fine-tuning, as per Dotzel et al. (2024). We quantize both weights and activations for
MXINT-4, however activations are kept in BF16 for the FP4 experiments as activation quantization
was found to cause a detrimental effect in model performance at this precision (Liu et al., 2023a).

Mixed-precision strategy For our primary experiments, we perform quantization at two granular-
ities: layer-wise and matmul-wise. In the former, the quantization ratio is determined by the number
of transformer layers casted to low precision. In the latter, we consider the precision for each indi-
vidual matrix multiplication; for example, QKV projections, multiplication of the attention scores
and MLP layers can each be quantized separately, even within the same layer. We find a solution for
Equation (1) by running random search with a trial number of 50 at 1024 subsamples per iteration.
We justify these choices in Appendix D and Appendix E. The inner loop of the search conducts
post-training quantization (PTQ), and the entire search process involves no training.

Platform and GPU hours We perform experiments on a 20-node cluster with eight A6000 48GB
GPUs, a 256-core AMD EPYC processor and 1024GB RAM in each node. Experiments of models
larger than 30B are performed on a cluster of DGX A100 eight-GPU pods. The effective run time
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of the experiments in total is approximately 15k A6000 GPU hours and 5k A100 GPU hours. We
also spend around 1k GPU hours tuning search hyper-parameters, such as the number of trials.

4.2 SCALING LAW 1: SCALING WITH MODEL SIZES
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Figure 2: Results supporting LLM-MPQ Scaling Law 1 at matmul granularity. We show how per-
plexity on SlimPajama scales with increasing model sizes under various quantization ratios (Qr

values). Larger models can tolerate higher quantization ratios.
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Figure 3: Results supporting LLM-MPQ Scaling Law 1 at layer granularity. We show how perplexity
on SlimPajama scales with increasing model sizes under various quantization ratios (Qr values).
Larger models can tolerate higher quantization ratios.

Firstly, we evaluate perplexity on the SlimPajama dataset at various quantization ratios and granular-
ities to illustrate the overall loss landscape. This was chosen as the principal search task as perplexity
on Alpaca showed less variance with varying quantization ratios, especially for larger models. 2

For clarity, in Figure 2 and Figure 3 we plot the highest quantization ratio achievable at each granu-
larity (i.e. 0.95 for layer wise and 0.99 for matmul wise) as well as a more modest quantization ratio
(0.9 for layer wise and 0.95 for matmul wise), comparing to the non-quantized model (Qr = 0) in
each case. We also present zero-shot accuracy results on MMLU in Figure 4 and Figure 5, which
follow a similar pattern, although more variability can be seen due to the potential bias introduced
in the downstream task, although the trend can still be observed.

2A more detailed comparison between Alpaca and SlimPajama tasks is shown in Appendix C.
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Figure 4: Results supporting LLM-MPQ Scaling Law 1 at matmul granularity. We show how ac-
curacy on MMLU scale with increasing model sizes under various quantization ratios (Qr values).
Bigger models can tolerate higher quantization ratios.
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Figure 5: Results supporting LLM-MPQ Scaling Law 1 at layer granularity. We show how accuracy
on MMLU scale with increasing model sizes under various quantization ratios (Qr values). Bigger
models can tolerate higher quantization ratios.
Both experiments demonstrate that under a fixed quantization ratio, performance metrics improve
for both mixed precision strategies as the model gets larger, supporting our first scaling law. To
eliminate the natural scaling law effect of increased language modelling capability at larger model
sizes, we evaluate the difference in perplexity compared with the unquantized version of each model,
i.e. ∆perplexity = (pplq − pplori)/pplori. As shown in Figure 2 and Figure 3, from both the absolute
perplexity perspective and ∆Perplexity perspective, the observed trend aligns with Scaling Law 1.
More comprehensive results for SlimPajma perplexity are presented in Appendix A.

Although the experimental results support the first scaling law, it naturally leads to the question of
the rate at which this scaling occurs. To further demonstrate our observation regarding Scaling Law
1, we can consider maximum achievable quantization ratio Cmax under a maximum performance
loss budget Lmax. Using perplexity change at matmul granularity for the Qwen-1.5 model, we
use an exponent model to fit model size about the maximum quantization ratio under various loss
budgets Lmax, i.e. y = ekCmax+c. As shown in Figure 6, we find that for fixed perplexity changes of
5% 10% and 20%, the obtained parameters were (k = −11.68, c = 4.83), (k = −11.27, c = 3.35)
and (k = −12.84, c = 1.86), respectively.

In Figure 6, we use (1 − Qr) on the x-axis to represent the percentage of high-precision compo-
nents required. The findings indicate that larger models require an exponentially reduced num-
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Figure 6: Fitted exponential models of model size around quantization ratio under various loss
budgets. y-axis is in log-scale.
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Figure 7: Results supporting LLM-MPQ Scaling Law 1 for FP4-E2M1 precision.

ber of high-precision components for achieving a fixed model performance target (in perplexity
or accuracy). It is also worth noting that the k values of the three fitted lines in Figure 6 are in
close proximity, suggesting that scaling under various model performance constraints is consistent.
This underscores the significance of Scaling Law 1, as it may suggest the future requirements for
low-arithmetic computation could increase exponentially with model size growth. We thoroughly
examine the potential implications of these laws in Section 5.

4.2.1 EXTENDING TO OTHER ARITHMETIC FORMATS

We also show that the proposed LLM-MPQ Quantization Scaling Laws can be extended to differ-
ent arithmetic formats by demonstrating an example of FP4-E2M1 (floating-point 4-bit with 2-bit
exponent and 1-bit mantissa), as discussed in Section 2.1. This format is more compact than MX-
INT4 due to the shared exponent in MX formats, but offers a smaller dynamic range and resolution.
As proposed by Dotzel et al. (2024), we consider weight-only quantization (with activations kept
at 16-bit) for the precision allocation search. The results are presented in Figure 7. Although the
quantization ratio is generally lower than that in Section 4.2 due to the limited dynamic range and
resolution of FP4, the observed trend follows LLM-MPQ Scaling Law 1.

4.3 SCALING LAW 2: SCALING WITH QUANTIZATION GRANULARITIES

As stated in Section 2.1, recent LLM quantization methods adopt fine-grained quantization, meaning
tensors are split into small blocks, quantized and then scaled individually. In this subsection, we em-
pirically verify our Scaling Law 2 by performing mixed-precision quantization search at block sizes
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(a) Performance degradation of Qwen-1.5-7B. (b) Performance degradation of Qwen-1.5-14B.

Figure 8: Performance degradation of Qwen-1.5 models on SlimPajama for block-wise quantization
at various quantization ratios. We only fit the data points with perplexity changes within 100%. Both
a-xis and y-axis are in log-scale.
of 16, 32, 64, 128, 256, and 512. Additionally, we perform per-vector (per-row, per-column) scaled
quantization (Dai et al., 2021) and per-tensor scaled quantization. In per-vector scaled quantization,
each row of activations (corresponding to a column of weights) shares the same scaling factor. In
per-tensor scaled quantization, all elements in a tensor share the same scaling factor. To fit per-vector
and per-tensor quantization to the same plot, we consider the averaged number of elements in each
vector or tensor as the block size.

Smaller block sizes enable lower quantization error and better model performance, since a block’s
scaling factor depends on the maximum element magnitude within the block. When a large scaling
factor is assigned to accommodate the activation outliers (as discussed in Section 2.1), the round-off
error of remaining elements in the block can cause performance degradation. However, decreasing
the block sizes leads to higher average bitwidth, highlighting the trade-off between memory footprint
and model performance in quantization granularity.

We aim to find a quantitative scaling law with quantization granularity for LLMs, that is, to inspect
how the model performance changes with granularity. Figure 8 illustrates the perplexity change for
the QWen-1.5-7B and 14B model relative to FP16 precision across various block sizes under various
quantization budgets. In the figure, we observe the following trends:

• The perplexity change (∆ppl = (pplq −pplori)/pplori) increases with block size, i.e. higher
granularity contributes to lower performance degradation.

• Given a target ∆ppl, smaller block sizes enable a larger quantization ratio.

To further illustrate Scaling Law 2, we fit a power function model of ∆ppl with respect to the
unified the block size under various granularities (i.e. y = Axk) to show the impact of quantization
granularity on model performance under various quantization ratios. Note that for quantization
ratios beyond 0.95, we observe an explosion in ∆ppl, hence these values are excluded from the fitted
model. We find the following model parameters for ratios of q = 0.5,0.9, 0.95 in 7B respectively:
(A = 0.53, k = 0.32), (A = 1.65, k = 0.62), (A = 3.57, k = 0.61), and in 14B respectively:
(A = 0.63, k = 0.29), (A = 3.3, k = 0.37), and (A = 1, k = 0.63). We hope that this scaling law
guides the future study of fine-grained quantization for LLMs.

5 DISCUSSION

Implications on AI Inference Hardware and System Designs A critical finding of this paper is
the observed correlation between model size and quantization ratio, indicating that larger models
can accommodate exponentially more low-precision components without performance degradation.
This validates the recent trend of increasing support for low-precision arithmetic computation in
Deep Learning accelerators such as GPUs and TPUs. For example, the tensor cores of the H100
SXM achieve 3958 TFLOPs when operating at FP8 precision, while the compute capacity is ap-
proximately halved to 1979 TFLOPs at FP16 precision (Choquette, 2022). The insight from the
first LLM-MPQ scaling law, showing that larger LLMs require more low-precision computational
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resources compared to their smaller counterparts, highlights the need for increased low-precision
resources in future hardware devices for efficient serving of large models.

Additionally, we’ve shown through the second LLM-MPQ scaling law that finer granularity in
mixed-precision approaches enables a higher quantization ratio when the model size is fixed. This
insight has direct implications in the design of parallelization strategies for multi-device or multi-
node environments (Zheng et al., 2022; Li et al., 2023b). Coarse-grained mixed-precision strategies
such as layer-wise mappings can generally be handled as a device allocation problem. Meanwhile,
finer-grained mixed-precision approaches such as at the vector/column level necessitate more careful
handling, potentially demanding compiler-level partitioning strategies or even dedicated hardware
designs to realize the theoretical performance improvements.

Extension to Further Architectures and Arithmetic Formats It is natural to consider whether
the observed findings in this work extend to larger LLMs, such as the recently released Llama-3.1-
405b (Dubey et al., 2024), although the range of available pre-trained checkpoints is limited, due
to the significant cost of training larger models. Additionaly, the same trends could be explored
in different architectures including Mixture-of-Experts (MoE) models such as Mixtral (Jiang et al.,
2024) and multimodal models such as Pixtral (Mistral AI). Finally, further arithmetic formats such
as ternary (Chen et al., 2024) and additional configurations from the MXINT (Rouhani et al., 2023a)
standard offer opportunities for further exploration. One specific challenge is the quantization ap-
proach used in this paper is emulated quantization following Zhang et al., where it incurs more
computation than natively supported FP16 inference, hence impedes the evaluation on larger mod-
els (eg. 400B). A possible future direction would be to test these scaling laws on large models using
actual MXINT4 and FP4 quantization upon the availability of compatible hardware.

LLM Evaluation: Navigating Layers of Complexity A number of challenges were faced during
experimentation regarding the reproducibility of accuracy and perplexity metrics for pre-trained
models. For example, the evaluation methodology for Llama-2 was extrapolated from the official
repository 3 since the official evaluation code was not released, leading to a gap between the reported
performance and our own evaluation. These discrepancies highlight the importance of open and
reliable benchmarks for pretrained language models.

An additional observation was that despite the breadth of downstream tasks used to evaluate LLMs
in the literature, not all are effective in capturing the scaling trend of LLM performance at various
quantization methodologies. Some widely reported metrics, such as Wikitext2 and LAMBADA (Pa-
perno et al., 2016), showed negligible sensitivity to the quantization ratio in performance degrada-
tion across the models we evaluated, showing that the bias introduced by various downstream tasks
needs to be carefully considered when searching for the optimal quantization strategy for deploy-
ment. The core results in this work were reported using a subset of the SlimPajama dataset, as
this led to a higher sensitivity to quantization ratio compared to instruction-tuning datasets such as
Alpaca, as shown in Appendix C. Another reason for this decision was to ensure that quantization
search was performed under a similar data distribution to common LLM pretraining datasets.

Hypotheses on other Efficient AI Methods While we focused primarily on mixed-precision quan-
tization in this work, a clear direction for future research involves examining scaling trends for other
AI efficiency methods, such as sparsity and low-rank approximations. We hypothesize that the scal-
ing laws for such methods will closely resemble the scaling laws for quantization introduced in this
work. More broadly, we hypothesize the existence of a broader scaling law governing how the
ratio of approximate compute to exact compute scales with model sizes, and the granularity at
which approximate compute is applied.

6 CONCLUSION

In this paper, we present two scaling laws of the mixed precision quantization of LLMs verified by
extensive experiments, i.e., LLM-MPQ scaling law 1) the quantization ratio for a fixed loss target
exponentially scales with the model size. 2) The max quantization ratio achievable for a given
loss target increases with finer quantization granularity. These two laws offer a guidance to further
studies on LLM quantization, and indicate a potential scaling trend for designing low-precision LLM
inference accelerators.

3Official repository for the LLaMA model: github.com/meta-llama
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A SLIMPAJAMA PERPLEXITY FOR DIFFERENT MODEL FAMILIES

In this section, we show the complete set of results for SlimPajama perplexity and percentage change
∆ppl compared to the non-quantized baseline for QWen1.5, Llama2 and Gemma2 models across a
range of quantization ratio Qr. The ratios are selected in log scale intervals to give an overview of
the quantization ratio space and focus on the maximal ratio achievable across models. Note that the
resolution for layer-wise mixed quantization is coarser than that for matmul-wise, due to the reduced
granularity. Specifically, we evaluate up to a ratio of 0.99 for matmul-wise quantization.
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Figure 10: qwen on pajama in layer-wise.
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Figure 11: llama2 on pajama in matmul-wise.
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Figure 12: llama2 on pajama in layer-wise.
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Figure 13: gemma2 on pajama in matmul-wise.
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Figure 14: gemma2 on pajama in layer-wise.
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B DOWNSTREAM TASK METRIC FOR QWEN1.5

In this section, we show the complete set of evaluation (more Qr ratios) for the MMLU downstream
task. We report the MMLU evaluation accuracy for Qwen 1.5 models, as well as ∆accuracy.
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Figure 15: qwen on mmlu in matmul-wise.
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Figure 16: qwen on mmlu in layer-wise.
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C COMPARING ALPACA AND SLIMPAJAMA SEARCH PERPLEXITY

In this section, we show that the observations made in this paper are general and extend to other pre-
training datasets such as Alpaca. Figure 17 shows similar results for Alpaca compared to SlimPa-
jama in Figure 18.
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Figure 17: qwen on alpaca in layer-wise.
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Figure 18: qwen on pajama in layer-wise.
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D AN ABLATION STUDY ON NUMBER OF TRIALS

To illustrate the selection for our trial number for the random search, we demonstrate the result for
setting the trial numbers to 10, 20, 50, 100, and 200 in a random search on QWen1.5 7B model
with Qr = 0.9. As shown in Figure 19, our selection of 50 search trails reaches similar results with
longer trails. Hence, it is selected as the trial number for our search.
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Figure 19: Best perplexity reached with given search trails.

E AN ABLATION STUDY ON NUMBER OF SUB-SAMPLES

To illustrate the selection for our sub-sample sizes for the random search, we show the effect on per-
plexity values over different numbers of sub-samples for the QWen-1.5-7B model on SlimPajama.
In Figure 20, the curve saturates at 1024 and is selected as the number of samples for our search.
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Figure 20: Best perplexity reached under given sub-sample size.
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F LAMBADA RUNS WITH OPT FAMILY

Here we show that not all downstream tasks effectively reflect the performance of quantized LLMs,
especially for older models, such as the OPT family. Figure 21 shows our results of OPT family
on the LAMBADA (Paperno et al., 2016). The loss of accuracy is negligible when scaling to larger
model sizes.
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Figure 21: qwen on pajama in layer-wise.
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